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A direct imaging algorithm for point and extended targets is presented. The algorithm is based on
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�tones� in a phase consistent way. The multitone imaging function can superpose multiple tones
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demonstrated via numerical examples.
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I. INTRODUCTION

In reflection seismology, ultrasound imaging in medical
applications, detection of defects in nondestructive testing,
underground mine detection and target detection using radar
or a sonar system, and so on, one seeks to identify the loca-
tion and shape of some scatterers by sending probing waves
and measuring the scattered waves, e.g., using scattering re-
lations. This is in general an ill-posed �nonlinear� inverse
problem. Imaging the whole medium using a general inverse
problem approach may be too complicated and too expensive
to be practical in many applications, for instance, if the im-
aging domain is large compared to the wavelength. If the
background medium is homogeneous and some simple
boundary condition is satisfied at the boundary of the target,
the inverse problem can be turned into a geometric problem,
that is, the problem of determining the shape of the target
from the scattered wave field pattern. Using nonlinear opti-
mization approach in this case is still difficult and computa-
tionally expensive.

Direct imaging methods, which are not based on nonlin-
ear optimization and hence do not require forward solver or
iterations, have attracted a lot of attention recently. If the
targets are small compared to the array resolution, the loca-
tion information can be obtained while the geometry in-
formation is not resolved. Several matched filter type of
algorithms have been developed for imaging or locating
point targets, for example, the multiple signal classification
�MUSIC� algorithm.1–4 Under the assumption of point tar-
gets the response matrix �defined in Sec. II� has a simple
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structure. This structure is used in MUSIC and has also been
exploited to focus a wave field on selected scatterers using
iterated time reversal.5–10 The iterated time reversal proce-
dure corresponds to the power method for finding the domi-
nant singular vectors for the response matrix. However, with
the point target assumption, physical properties and the ge-
ometry of the target are neglected. More importantly an ex-
tended target is not a superposition of point targets. For ex-
tended targets the response matrix has a more complicated
structure. Recently a few MUSIC type of algorithms11–14

have been developed to image the location and shape of ex-
tended targets. A crucial step is to use resolution and noise
level based thresholding to determine how many singular
vectors of the response matrix span the signal space.

Although the generalized MUSIC algorithm for a single
frequency is capable of imaging different types of targets
with efficiency, robustness, and accuracy, provided full aper-
ture data are given, for limited aperture the results are typi-
cally not very good. Multiple frequencies should be used to
complement the lack of spatial aperture.

The MUSIC algorithm is based on the singular value
decomposition �SVD� of the response matrix. This decompo-
sition allows for an arbitrary complex phase; therefore, com-
bining different frequencies in a phase coherent way is not
direct. In this paper, we propose a multitone imaging algo-
rithm that makes use of coherent information in both phase
and space. In particular, we take advantage of phase coher-
ence from multiple frequency data to improve both reso-
lution of robustness of the imaging procedure. The crucial
points in our multitone algorithm are �1� physically based
factorization of the response matrix that transforms a passive
target detection problem to an active source detection prob-
lem and �2� a phase coherent imaging function that can su-
perpose multiple tones and multiple frequencies to take ad-

vantage of both spatial diversity �aperture� of the array
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and/or the bandwidth of the probing signal. The proposed
method can be parallelized easily since the evaluation of the
imaging function at different grids is independent.

The outline of this paper is as follows. In Sec. II we
describe how to locate point targets using a method that we
call the multitone algorithm. In Sec. III, we generalize the
method to imaging of extended targets. Numerical experi-
ments are presented in Sec. IV.

II. RESPONSE MATRIX AND IMAGING POINT
TARGETS

Our imaging setup uses an array of transmitters that can
send out probing waves into the region of interest and an
array of receivers that can record scattered waves. Our mea-
surement data are the response matrix whose elements are
the inter-responses between array elements. The arrays can
enclose the region of interest �full aperture� or can have par-
tial aperture. For simplicity, we first consider an active array
when the array of transmitters and the array of receivers
coincide, moreover, time harmonic waves. Assume that there
are N transducers, which can function both as a transmitter
and as a receiver, and that are located at �1 , . . . ,�N. The Pij

element of the response matrix P is the received signal at
transducer j for a probing pulse sent out from transducer i.
Assume that there are M point targets located at x1 , . . . ,xM

with reflectivity �1 , . . . ,�M. The response matrix in the Born
approximation has the following simple structure using spa-
tial reciprocity:

Pij = �
m=1

M

�mG0�xm,�i�G0�� j,xm�

= �
m=1

M

�mG0��i,xm�G0�� j,xm� ,

where G0�x ,y� is free space Greens function and we suppress
the dependence on frequency. In matrix form we have

P = �
m=1

M

�mgmgm
T ,

where

gm = �G0��1,xm�,G0��2,xm�, . . . ,G0��N,xm��T,

m=1,2 , . . . ,M, are called illumination vectors, each of
which corresponds to the received signals at the array for a
point source at xm. For an active array, the response matrix is
square and symmetric with rank M in general. If the targets
are well resolved by the transducer array, i.e., the separation
distance between the targets is larger than the resolution of
the array, we have that the point spread function

��xm,xm�� = ḡm
T gm� � 0 if m � m�,

which means the wave field corresponding to the time rever-
sal of a point source at one target is almost zero at all
other targets. Hence ĝm=gm / �gm� and its complex conjugate
ĝm can be regarded as the left and right singular vectors for
the response matrix P. In general this one to one correspon-

dence does not exit. However, one can show that gm, m
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=1,2 , . . . ,M still span the signal space of P even if multiple
scattering among point targets is present based on the Foldy–
Lax formulation.1

Remark. Here we assume the simplest model for point
scatters. In general, a point scatterer may induce both mono-
pole and dipole for the scattered field. For example, the scat-
tered field for an acoustic point scatterer is the sum of mono-
pole �by contrast in compressibility� and dipole �by contrast
in density�.15,16 Our formulation and imaging function only
use the monopole component which works for hard scatter-
ers. We should be able to modify our imaging function to
take into account dipoles which will be discussed in our
future work.

To motivate our imaging algorithm consider first the
case with a point source at the mth scatterer location; the
vector of observations at the transducer array is then

g�xm� = �G0��1,xm�,G0��2,xm�, . . . ,G0��N,xm��T.

Phase conjugation at the mirror and backpropagation to the
imaging domain correspond to forming the imaging function
Im�x�=g�xm�Hg�x�, where x is a search point in the domain
and the superscript H denotes the transpose and complex
conjugate. Note that physical time reversal corresponds to
phase conjugation in frequency domain and then backtrans-
formation to time domain. In the inverse problem setting,
although xm is unknown, an estimate of ĝ�xm� can be ob-
tained �up to a constant phase� via the SVD of the response
matrix. The imaging function will peak at the source location
xm due to phase coherence; Im�xm�= �g�xm��2. In particular, if
we use normalized ĝ�x� and ĝ�xm� in the above imaging
function, it is an optimal matched filter.17–19 Classic Rayleigh
resolution theory gives that Im�x� will be supported in the
neighborhood of the source-point xm with a lateral resolution
of order �L /a. Here �=c0 /� is the wavelength, L is the
distance from the array to the source, a is the aperture of the
array, and c0 denotes the speed of propagation.

We compute the SVD of the response matrix to extract
dominant singular vectors �tones�. This matrix factorization
corresponds to turning passive targets into imaging sources
for the scattered wave. However, the SVD of a matrix is
unique up to a complex phase, e.g., if the following is a SVD
of P:

P = �
m

�mumvm
H,

where um�vm� are the unit left �right� singular vectors and �m

are the singular values of P, then ei�mum�ei�mvm� are also left
�right� singular vectors for arbitrary �m, m=1,2 , . . .. To over-
come the arbitrary phase in the SVD, we propose the follow-
ing modified imaging function for each pair of left and right
singular vectors um and vm, which we call a tone of the
response matrix:

Im�x� = �ĝH�x�um��ĝH�x�v̄m� .

First, this imaging function removes the phase ambiguity of
the SVD of the response matrix. Second, for well resolved

point targets,
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Im�x� = �ĝH�x�ĝ�xm��2.

Note that by “squaring” in this way, instead of using norm
square, we maintain the phase information, e.g., the phase
information is just linearly doubled. Next, we superpose the
dominant tones for the different frequencies to obtain the
general form of the multitone imaging function:

IM�x� = �
�

�����
m=1

M�

�ĝH�x;��um
���ĝH�x;��v̄m

�� . �1�

We remark that for an active array with the transmitters
and receivers coinciding, the response matrix P is complex
symmetric and can be factorized as P=U�UT. The imaging
function then becomes

IM�x� = �
�

�����
m=1

M�

�ĝH�x;��um
��2. �2�

In the general case when the transmitters and receivers do
not coincide, e.g., there are s transmitters located at �1 , . . . ,�s

and there are r receivers located at �1 , . . . ,�r, the response
matrix is of dimension s	r. The ijth element Pij then
records the response at jth receiver for a signal sent out from
ith transmitter. Define the illumination vector with respect to
the receiver array and transmitter array, respectively, as

gr�x� = �G0��1,x�,G0��2,x�, . . . ,G0��r,x��T

and

gs�x� = �G0��1,x�,G0��2,x�, . . . ,G0��s,x��T.

The response matrix in the Born approximation has the fol-
lowing form in the case of M point targets located at
x1 , . . . ,xM with reflectivity �1 , . . . ,�M:

P = �
m=1

M

�mgs�xm�gr
T�xm� .

Thus, the column and row space of P is spanned by gs�xm�
and gr

T�xm�, respectively. Accordingly the multitone imaging
function is constructed as

IM�x� = �
�

�����
m=1

M�

�ĝs
H�x;��um

���ĝr
H�x;��v̄m

�� . �3�

Here ĝ denotes the normalized illumination vector.
The frequency weight function ���� can in principle be

chosen to reflect the signal to noise ratio �SNR� of different
frequencies. However, here we will not discuss this issue and
use a uniform weighting. Note second that M� is the number
of significant tones which may vary with frequency. If there
are M point targets that are well resolved by all the frequen-
cies used, then M�=M. In general, e.g., for extended targets,
M� may be proportional to the resolution of frequency �.11,20

In particular, when there is strong noise present, e.g., low
SNR, M� is an important thresholding �regularization�
parameter.11 An important strength of the multitone algo-
rithm is that it is quite robust with respect to the choice of
M�. In particular, when the noise level is low, we can choose

it to coincide with the smaller dimension of the response
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matrix. This is not the case for, for instance, the MUSIC
algorithm, described below, whose imaging result depends
more sensitively on the thresholding.

We summarize by stating that two important features of
the multitone imaging algorithm are as follows:

1. The SVD factorization of the response matrix turns a pas-
sive target detection problem into an active source detec-
tion problem. The principal component �tone� decompo-
sition of the response matrix takes the full array into
account simultaneously and extracts dominant informa-
tion or “tones” via the SVD, giving a robust imaging
scheme.

2. The imaging function exploits coherent phase information
via superposition of complex tones.

Next, we compare our multitone imaging algorithm with
two other popular imaging algorithms. For simplicity we dis-
cuss the active array case.

1. MUSIC. The MUSIC imaging function4 is based on the
projection to the signal space spanned by dominant sin-
gular vectors, which is equivalent to the following quan-
tity:

�
m=1

M

�ĝH�x�um�2,

where M is the dimension of the signal space that is
determined according to the resolution and/or the SNR
analysis.11,20 However, phase information is lost after
projection and hence it is difficult to superpose multiple
frequencies based on phase coherence. Thus, travel time
information is not effectively utilized in this implemen-
tation of the MUSIC imaging functional.

2. Kirchhoff migration. The Kirchhoff migration is a time
domain method which exploits travel time information
between pairs of transducers. After Fourier transform it
can be approximated in frequency domain21 by the fol-
lowing:

g̃H�x�PgS �x� = g̃H�x�	�
m=1

N

�mumvm
H
g̃�x� ,

where g̃�x� is Green’s function without the spatial decay-
ing factor �1 / �x�� and N is the number of transducers.
The above formula is similar to Eq. �1� for each fre-
quency except the following two main differences: �1�
our imaging function does not contain the weighting by
the singular values and �2� our imaging function intro-
duces a thresholding/regularization based on resolution
and/or SNR. These two differences mean that the multi-
tone imaging algorithm only separates signal space from
noise space and treats all dominant signals, i.e., domi-
nant singular vectors, equally. The motivation comes
from the following observations: a point target partially
blocked by other targets will contribute a singular vector
with smaller singular values. So our multitone imaging
function will increase the visibility of partially blocked
targets compared to Kirchhoff migration, as shown in

Figs. 2 and 3 in Sec. IV A. Also an extended target is not
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a superposition of point targets. For example, it is illus-
trated in Ref. 11 that each singular vector does not cor-
respond to a point on the boundary of an extended target.
The geometry of the boundary is embedded in the signal
space spanned by the dominant singular vectors collec-
tively. Hence the multitone imaging function will serve
to give a uniform illumination of the visible parts of the
boundary.

In summary our multitone imaging algorithm takes ad-
vantages of both approaches in a natural way. Like MUSIC,
our algorithm is based on the SVD of the response matrix
and a resolution and/or SNR based thresholding to extract
principal components �tones� from the full array information.
The principal components are used collectively and in a uni-
form weighting situation. This is particularly important for
imaging extended targets. The response matrix for an ex-
tended target can have many principal components.12,16,22–26

The collection of all these principal components contains
information about the extended target. On the other hand,
instead of using a projection operator as in MUSIC, we use a
propagation operator as in the Kirchhoff method which
maintains coherent phase information and allows linear su-
perposition of different tones �components� and multiple fre-
quencies. Only at locations with strong scattering are phases
of different tones and different frequencies in our imaging
function coherent. Like in the Kirchhoff method travel time
information is thus utilized in our imaging function. Our ap-
proach is based on gaining robustness via using the SVD of
the response matrix to extract coherent information and is
extremely simple to implement. We remark that other recent
approaches like the coherent interferometric �CINT�
method21 aim at extracting information via carefully
screened cross correlation computations of the observations.
This approach has been shown to work well in a strongly
heterogeneous environment but is less direct in its imple-
mentation.

III. EXTENDED TARGETS

A. Dirichlet boundary condition

We consider the situation with an extended target. First,
let us assume a Dirichlet boundary condition for the target,
i.e., a sound-soft target. Let 
 denote the target and 
c the
exterior of the target. Let G
�x ,y� be associated Green’s
function that solves

�G
�x� + k2G
�x� = ��x − y�, x,y � 
c � Rm,

G
�x,y� = 0, x � �
 ,

and a far field radiation boundary condition. The scattered
field at transducer � j corresponding to a point source at �i

follows from Greens formula and is

Pij = �
�


G0��i,y�
�G
�� j,y�

�

dy ,

where G0 is free space Green’s function. A physical interpre-

tation is that the source of the scattered wave field is a
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weighted superposition of monopoles at the boundary. The
response matrix can be written as

P = �
�


g�y�	 �g
�y�
�



T

dy , �4�

where g�y� is the illumination vector for the homogeneous
background, which is known, and g
�y� is the illumination
vector

g
�y� = �G
��1,y�, . . . ,G
��N,y��T,

which is unknown.
Equation �4� gives a factorization of the response matrix

that separates the known and unknown components. Thus,
the response matrix is superposed from illumination vector
g�y�, where y belongs to the illuminated parts of the bound-
ary, e.g., where �g
�y� /�
 is not small. Therefore, we apply
SVD to the response matrix to extract the singular vectors
um�vm� and then use the imaging functions �2� for symmetric
active array and �3� if the transmitter array and receiver array
are different. This imaging function will peak at the well
illuminated parts of the boundary. Physically, the peak can be
explained by the fact that the boundary acts as a source for
the scattered field; thus also, iterated time reversal, i.e.,
power method for finding singular vectors, will give focusing
on the boundary. The thresholding strategy for extended tar-
gets introduced in Ref. 11 can be used to determine the
thresholding parameter by an optimal cutoff.

We remark that the unknown weight function �illumina-
tion strength� for the monopoles at the target boundary,
�g
�y� /�
, is not uniform in general due to geometry of the
target, such as singularities and concavity of the boundary,
and/or the array configuration, such as illumination angles
and partial aperture. Locations on the boundary with stronger
wave field, i.e. better illuminated by the source, have more
weights. These factors will be reflected by the magnitude of
singular values for different singular vectors. In our multi-
tone algorithm each principal component will be given an
equal weight as long as its corresponding singular value is
above the noise threshold. That is why our imaging function
gives a fairly uniform intensity on the well illuminated
boundary. This is an important aspect of our approach: by
taking out the scaling of the tones by the singular values we
focus on the geometrical aspects of the extended scatterer
and compensate for differences in relative illumination
strength. Thus differential parts of the boundary are imaged
with a similar fidelity.

B. Neumann boundary condition

For a sound-hard target, with a Neumann boundary con-
dition for the extended target the response matrix has the
form

P = − �
�


	 �g�y�
�



g

T �y�dy .

In other words, the source of the scattered wave field is an
�unknown� weighted superposition of dipoles �g�y� /�
 at the

boundary. Therefore, the normal direction is part of the un-
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known in the imaging function. As is done in Ref. 11 we will
incorporate a direction search in our imaging function, e.g.,
among a fixed collection of discretized directions, � j, j
=1,2 , . . ., we maximize the imaging function among these
directions at a searching point x. Our multitone imaging
function is then in the general case:

IM�x� = max
j
��

�

�����
m=1

M� 	 �ĝs
H�x;��
�
 j

um
�
	 �ĝr

H�x;��
�
 j

v̄m
�
� .

C. Limited or synthetic aperture

For single frequency and full aperture the MUSIC algo-
rithm typically works better than multitone. However, for
limited aperture or synthetic aperture with multiple fre-
quency data MUSIC may fail while multitone can work well.
We demonstrate below that the multitone algorithm works
well also in a case with limited or synthetic aperture.

D. Far field data

In Sec. II the response matrix is defined in terms of near
field data, with the sources and receivers in near field. In
some applications, the measurement data are far field data,
that is, the incident field is essentially a plane wave and the
far field pattern of the scattered field is recorded.

We now discuss briefly the case for far field data. For
Dirichlet boundary condition, the element of the response
matrix Pij corresponds to the far field pattern of the scattered
field in the jth direction due to an incident wave coming
from the ith direction:

Pij = u���̂ j;�̂ j� = ��
�


�u

�

�y;�̂i�e−ik�̂j·ydy ,

where the total field u is due to incident plane wave coming

from the direction �̂i, where �=−1 /4� for three dimensions
and �=−ei�/4 /
8��k� for two dimensions.

In matrix form

P = ��
�


�u�

�

ĝH�y�dy , �5�

where

ĝ�y� = �eik�̂1·y, . . . ,eik�̂n·y�T,

and u� is the vector of total fields corresponding to the inci-

dent plane waves from �̂1 , . . . , �̂n. Equation �5� gives a
physical factorization of the scattered field into known and
unknown parts. The far field pattern is a superposition of the
far field patterns of point sources located on the boundary of
the target; however, we do not know the weight function
which depends on the total field. In other words, the scatter-
ing at the target boundary acts as “sources” for the scattered
field. In this far field setup, it is natural to use ĝ�y� as the
illumination vector as discussed in Ref. 12. The signal space
of the response matrix should be well approximated by the
span of the illumination vectors ĝ�y� with y on the well-
illuminated part of the boundary of the targets. Hence, we

only need to change the form of illumination vectors in the
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multitone imaging function. Neumann type of boundary con-
ditions can also be dealt in a similar fashion as in the case
with near field data. See Ref. 12 for more details.

IV. NUMERICAL EXPERIMENTS

A. Point targets

First we show a few examples for point targets, targets
that are small compared to the resolution of the array. The
examples are two dimensional �2D� experiments and simula-
tions.

In the first numerical test, there are three targets with a
range of 30–40� �central wavelength�. The linear active ar-
ray is located at the left side and is composed of 21 trans-
ducers that are half wavelength apart, i.e., the aperture is
10�. The three targets are of size 0.5� each. We tested this
setup in both homogeneous and random media. The weakly
heterogeneous medium has a 5% standard deviation and the
correlation length is O���. Finite difference method is used
to solve the Helmholtz equation with perfectly matched layer
�PML� technique27 for 21 frequencies that are equally dis-
tributed between 0.9� and 1.1� with equal weight. The size
of grid in numerical scheme is � /10 in the 2D rectangle
domain. The star shows the true location of targets.

Figure 1 shows the SVD pattern for a fixed frequency
�0.9�� for these two cases. In the homogeneous medium,
there are only three dominant singular values. However, the
three singular vectors may not have a one to one correspon-

0 5 10 15 20 25
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1

2

x 10
−4

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

−3

(b)

FIG. 1. �Color online� SVD pattern of the response matrix.
dence to the illumination vector of the three targets due to
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multiple scattering among the targets. In particular, the re-
flected wave from the rear scatterer will be mixed with the
reflection of the two front ones.

The numerical data used for imaging targets in hetero-
geneous medium are the scattered wavefield by the target
and the background heterogeneous medium, i.e., the differ-
ence of the two wavefields corresponding to the medium
with targets and the homogeneous medium, respectively. The
goal is to image dominant scatterers/targets without imaging
or knowing the details of the background medium, which is
very desirable in many practical applications. The situation is
also more difficult than using the difference data, i.e., mea-
suring the difference of the two wavefields corresponding to
the medium with targets and the same medium without tar-
gets, respectively. Figures 2 and 3 show the imaging results
using multitone imaging algorithm using different number of
frequencies and different number of leading singular vectors.
It shows clearly that

• superposition of coherent phases from multiple frequencies
improves range resolution;

• using the leading three singular vectors �the best SNR
thresholding� produces the best results; however, the imag-
ing result is not very sensitive to thresholding; and

• the partially blocked target has a better visibility compared
to the Kirchhoff migration for the reason discussed in Sec.
II.

As shown in Fig. 1, the SVD pattern is more compli-
cated in random medium due to multipathing. Figure 4
shows the imaging results using the multitone imaging algo-
rithm, which demonstrates the following:

• The location information of three point targets is not in-
cluded in the first three singular vectors.

• Involving more singular vectors, even without threshold-
ing, works well since only strong scattering at targets is
superposed coherently �in phase� across different frequen-
cies.

• Again the partially blocked target has a better visibility
compared to the Kirchhoff migration.

Finally we test our algorithms on real experimental data.
The data were kindly provided by Daniel D. Stancil and his
group at Carnegie Mellon University. In their experimental
setup, transmit array A and receive array B are used, as
shown in Fig. 5. The locations of transmitters and receivers
are different. The measurements were taken at 201 frequency
points ranging from 4 to 6 GHz. An absorbing wall is lo-
cated behind the test scenario.

Figure 6 shows imaging using data with different num-
bers of targets. The stars in each figure are the true locations
of targets.

B. Extended targets

In this section we test our multitone imaging algorithm
on extended targets with full aperture, limited aperture, and
synthetic aperture using near and far field data. All near field
data are simulated by solving the Helmholtz equation using

finite difference method with PML �Ref. 27� boundary con-
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dition. For inverse problems, the forward solver is not re-
quired to be very accurate, we did not use any special treat-
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FIG. 2. �Color online� Imaging point targets in homogeneous medium. Mul-
titone algorithm using 3 leading singular vectors and �a� 1 frequency, �b� 5
frequencies, and �c� 21 frequencies.
ment at the target boundary, i.e., the standard five point
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stencil for centered difference is used at every grid node.
Far field data are generated using a boundary integral
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FIG. 3. �Color online� Imaging point targets in homogeneous medium. Mul-
titone algorithm using 21 frequencies and �a� 5 leading singular vectors, �b�
21 singular vectors, and �c� Kirchhoff algorithm using 21 frequencies.
method. The simulations are in 2D.
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We give two examples with full or limited aperture near
field data, two examples with synthetic aperture near field
data, one example with full aperture far field data, one ex-
ample where sources and receivers do not coincide, and fi-
nally, one example with limited aperture far field data. For all
near field experiments, the transducers are about 200h �200
grid cells� away from the target and the forward data are
again generated using a finite difference method with the
PML technique.27 The multiplicative noise is modeled by
Pnoisy�i , j�=Re�P�i , j��a+Im�P�i , j��b, where a and b are
uniformly distributed in �1−c ,1+c�, where c is 10%. The
random medium or clutter is modeled as follows: The index
of refraction n�x� is a Gaussian with mean one and standard
deviation 10% and the correlation length is 10h, which is
comparable but less than the wavelength.

Figure 7 shows imaging of a single extended target in a
homogeneous medium. The full circular active array has 80
transducers surrounding the target. When a single frequency
is used the corresponding wavelength is �=16h. When three
frequencies are used, they correspond to wavelengths, �
=16h ,24h ,32h. The target is about 200h away from the ar-
ray and its size is about 80–100h. In this test, no threshold-
ing is used in the multitone imaging function. It is clear that
phases across different frequencies are superposed coher-
ently at the boundary only, where strong scattering happens.
Figure 8 shows imaging of the same target with limited ap-
erture data. Only half of the circular array from the bottom is
used.

Figure 9 shows the imaging of a sound-hard �Neumann
boundary condition� target with full aperture circular array
�80 transducers�. The array is about 200h from the center of
the target. Six equally spaced frequencies are used, with low-
est frequency �=32h and highest frequency �=16h.

We next test with synthetic aperture. We use the follow-
ing implementation of synthetic aperture. Let P be an 80-
by-80 response matrix corresponding to an active circular
array with full aperture �as above�, and Pn=Q�n :n
+19,n :n+19�, where n=1,11,21, . . . ,61, then the Pn’s are
the 20-by-20 response matrices with limited aperture and a
partial overlap. We use Pn at the same six frequencies as
above.

Figure 10 shows the multitone imaging function with
synthetic aperture data for a sound-soft �Dirichlet boundary
condition� object. The top one is the result for homogeneous
medium with clean simulated data. For the middle one, 10%
multiplicative noise is added to the data. The bottom one
shows imaging in a random medium with 10% standard de-
viation. The correlation length is about a wavelength.

In contrast, the MUSIC algorithm does not provide a
good imaging function for limited/synthetic aperture data.
Figure 11 shows the result using the MUSIC algorithm with
synthetic aperture data. The kite shape is not clear.

Finally we test the multitone imaging algorithm using
far field data. The only change made is in the form of the
illumination vector, i.e., using the far field pattern of Green’s
function. Figure 12 shows the multitone imaging function for
far field data with clean simulated data �left� and with 100%

multiplicative noise added to the simulated data �right�.
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Three wave numbers are used, k=5,6 ,7, so that the target
sizes are on the scale of the wavelength. The forward data
are here generated using the boundary integral method. In
this case 32 plane incident waves are used and the far field
data are collected at the same 32 directions.

We remark that the thresholding strategy discussed in

FIG. 4. �Color online� Imaging point targets in random medium. Multitone a
vectors, and �f� Kirchhoff algorithm using 21 frequencies.
Ref. 11 is used for all the above examples of extended targets
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except the first one. In principle, with thresholding only the
first few dominant singular vectors are used in the multitone
imaging function. This is known to be robust as long as the
leading singular values are well separated from the remain-
der. However, in our tests the results are not very sensitive to
the thresholding, which means that the multitone imaging

thm using 21 frequencies and �a� 3, �b� 5, �c� 10, �d� 15, and �e� 21 singular
lgori
function is already quite robust and is easier to use in prac-
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tice. Thus we also expect that our imaging results are robust
with respect to numerical errors and artifacts by our numeri-
cal scheme that generates the data.

In the last set of tests, we show imaging with arrays that
have transmitters different from receivers, or plane wave in-
cident angles different from far field data angles. Figure 13

FIG. 5. �Color online� CMU experiment setup.

100 120 140 160 180 200 220 240 260 280 300

50

100

150

200

250

(a)

100 120 140 160 180 200 220 240 260 280 300

50

100

150

200

250

(b)
FIG. 6. �Color online� CMU experiment data imaging: �a� one ta
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shows the multitone imaging function using wave numbers
k=5,6 ,7 for far field data with plane wave incident from the
right �16 directions� and far field pattern recorded on the left
�16 directions�. Dirichlet boundary condition is used.

Again, for limited aperture only part of the boundary
that is well illuminated is seen in the imaging function. Fig-
ure 14 shows the multitone imaging function using wave
numbers k=5,6 ,7 for far field data with limited aperture,
that is, only plane waves in a 180 deg angle are used �16
directions� and the far field data within the same angle are
recorded. Only the part of the kite boundary that is well
illuminated by the array can be observed in the imaging
function.

V. CONCLUSIONS

We propose a direct imaging algorithm, the multitone
method. The algorithm is simple and efficient because no
forward solver or iteration is needed. This method provides a
framework for balancing spatial diversity via the SVD with
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frequency diversity via superposition of coherent phases. By
taking advantage of phase coherence of multiple frequencies,
the imaging is enhanced and is robust with respect to noise.
The algorithm can deal with limited or synthetic aperture
data naturally as well as with different material properties
and different types of illuminations and measurements.
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FIG. 7. �Color online� Multitone algorithm using full aperture data with one
frequency �left� and three frequencies �right�.
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FIG. 8. �Color online� Multitone algorithm using limited aperture data �half
of the circular array from the bottom� with one frequency �left� and three
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FIG. 10. �Color online� Synthetic aperture multitone imaging for a kite
shape with clean data on the top, 10% multiplicative noise in the middle,

and 10% random medium fluctuations on the bottom.
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FIG. 11. �Color online� MUSIC imaging function for a kite shape with clean
synthetic aperture data. The result is poor.
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FIG. 12. �Color online� Multitone imaging for a kite shape and a circular

shape using far field data with 100% multiplicative noise.
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